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Abstract. The heavy fermion compound UPd2Al3 has attracted much interest on account of the coex-
istence of antiferromagnetism and superconductivity at temperatures below 2 K. The antiferromagnetic
fluctuations provide, principally via inelastic neutron scattering, a window on the low frequency dynamics
in this material. By an analysis of neutron scattering data, and taking into consideration results from other
experimental probes, it is suggested which sheet(s) of the f-electron Fermi surface may play an active role
in forming the superconducting state in UPd2Al3. The proposed scheme sheds new light on previously
reported anomalies in this material.

PACS. 74.70.Tx Heavy-fermion superconductors – 78.70.Nx Neutron inelastic scattering

1 Introduction

The transition to the superconducting phase breaks the
global gauge symmetry of the normal state. Additional
symmetries may be broken at Tc yielding so called “uncon-
ventional” superconducting states [1]. Such novel phases
are of great current interest as they may include examples
of self correlated (self organised) electronic systems. Ma-
terials susceptible to unconventional pairing mechanisms
may be expected to exhibit strong electronic correlations
in the normal phase, favourable candidates to date include
the heavy fermion, high temperature, and organic super-
conductors. In view of its primary significance, and since
it may shed light upon the microscopic pairing mecha-
nism, the identification of the symmetry of the supercon-
ducting order parameter in these materials has been the
object of many studies. The superconducting energy gap,
∆, which arises in microscopic theories of the supercon-
ducting state, is expected to be proportional to, and to
have the same symmetries as, the superconducting order
parameter [2]. Studies of the energy gap are thus used to
elucidate the nature of the order parameter. Techniques
to probe the symmetry and magnitude of ∆ include elec-
tron tunneling, thermal conductivity, infra red absorption
and nuclear magnetic resonance. These probes have, un-
fortunately, limited spectral capacity; for example, whilst
electron tunneling measures |∆| with good energy resolu-
tion it relies on the barrier thickness and its uniformity to
probe the spatial symmetry of ∆ within the Brillouin zone;
thermal conductivity relies on the sample geometry to give
the heat flow directionality with respect to the crystalline
axes; infra red absorption is limited in momentum trans-
fer to q ∼ 0 and nuclear resonance techniques, being local
probes of the magnetisation, give Brillouin zone integrals
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measured at very low (ω ∼ 0 on the scale of ∆) ener-
gies. In some instances, inelastic neutron scattering may
provide a tool capable of simultaneous energy and mo-
mentum resolution on the appropriate scales. We report
on the use of this technique to gain unique information on
the symmetry and magnitude of ∆ and make a tentative
identification of the sheet(s) of the Fermi surface active
in the formation of the condensate in the heavy fermion
superconductor UPd2Al3.

UPd2Al3, which crystallises in the hexagonal PrNi2Al3
structure (space group P6/mmm) with lattice constants
a = 5.350 Å and c = 4.185 Å, has been subject of numer-
ous investigations [3–8]. The compound appears to occupy
a special place amongst the heavy fermion superconduc-
tors in that it exhibits a strong antiferromagnetic polar-
isation below TN = 14.3 K, amounting to 0.85 µB per
uranium ion at low temperatures, which coexists with a
superconducting ground state below Tc = 2 K. In com-
parison, the other classic heavy fermion superconductors,
UPt3 and URu2Si2, pass into the superconducting phase
from a possibly dynamical, rather than static long range
ordered, antiferromagnetic state of very weak polarisa-
tion (∼ 0.03 µB per uranium ion). The stable moment in
UPd2Al3 is accompanied by an enhanced spectrum of low
energy fluctuations around the antiferromagnetic propa-
gation vector Q0 = (0, 0, 0.5) making it an ideal candidate
for an investigation of the superconducting order parame-
ter as imaged through the magnetic fluctuation spectrum.
The moments, which are principally associated with the
f -electron polarisation of the uranium ions, are coupled
ferromagnetically and lie in the basal plane [9–13]. The
breaking of hexagonal symmetry by the antiferromagnetic
moment is ignored in this article for notational conve-
nience; it has, however, been taken into account in the
calculations.
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The analysis, in the superconducting phase, of the
(antiferro)-magnetic excitations measured by high reso-
lution, inelastic, neutron scattering sheds valuable light
on the low frequency dynamics of the electronic quasi-
particles. In particular, one is able to monitor changes in
the amplitude and spectral form of the magnetic excita-
tions on passing below Tc. The observed changes are sig-
nificant [14–21]. The quasielastic scattering in the normal
phase, which is strongly focused around the antiferromag-
netic Bragg peaks at Q0 and which may be associated
with transitions between electronic quasiparticle states,
is replaced by an enhanced (by almost a factor of 2) in-
elastic peak in the low temperature superconducting state
[19–21]. The spin wave contribution to the scattering cross
section, which occurs for energy transfers greater than
1.3 meV (∼ kBTN), is not so dramatically affected by the
superconducting phase transition.

Within a model framework of the antiferromagnetic
superconducting phase, one may understand both the en-
hancement and change from quasielastic to inelastic na-
ture of the low energy scattering as arising from processes
in which the incoming neutron beam looses energy and
momentum to the condensate and creates quasiparticle
excitations. We illustrate, using a simple (even parity, sin-
glet) pairing approximation, how the momentum and en-
ergy dependence of the scattering constrain the symmetry
and magnitude of the gap function. The form factor of the
scattering, which exhibits a slow fall off of intensity with
momentum transfer [20], indicates that both the spin wave
and the low energy features are associated with f -electron
like orbitals of the Fermi surface. The anisotropy of the
scattering, that is, its wave vector dependence around Q0,
allows a tentative identification of the sheet(s) of the Fermi
surface contributing to the observed response. Below Tc

these sheets are, by inference, active in the formation of
the condensate. The identified Fermi sheet(s), the symme-
try of the gap function and its magnitude are compatible
with estimates made, for momentum transfers parallel to
the c∗-axis, by tunneling junction spectroscopy [22–24].

2 Data analysis

2.1 Analysis of neutron spectra

The analysis of the neutron spectra rests on two assump-
tions. First, that the major effect on passing below TN is to
introduce an antiferromagnetic potential which halves the
dimension of the unit cell, in reciprocal space, along the
c∗ axis. Thereafter, as far as the low energy quasiparticle
excitations are concerned the system looks paramagnetic
in as much as there is assumed to be no energy splitting
of the spin states.

The second assumption is that the observed magnetic
scattering, all of which is associated with the f -electron re-
sponse, and which may broadly be divided into two parts,
represented in the normal phase as (i) a quasielastic and
(ii) a (gapped) spin wave response, is best analysed as a
whole. To make the analysis we consider the total suscepti-
bility when the magnetisation of sub-system (i) is coupled

in a mean field approximation with the magnetisation of
sub-system (ii) [18–21,25–30]. The coupling constant is
taken to be energy, momentum and temperature indepen-
dent, i.e. the effect of the field due to sub-system (i) is
instantaneous and local on the magnetism of sub-system
(ii). This constraint may be relaxed in a more realistic
model. On passing into the superconducting phase, since
a rigorous theory of the magnetic excitation spectra in the
antiferromagnetic-superconducting phase is not yet avail-
able, we assume that the similar coupling occurs between
the quasiparticle excitations and the spin wave mode.

The presence of the antiferromagnetic moment sup-
presses time reversal invariance. Central to the analysis is
the idea that degenerate energy levels may however ex-
ist under the combined operation of time reversal and
translation by a lattice vector [31–33] which allows one
to consider superconductor pairing based on the mutual
attraction of degenerate quasiparticle states. Alternative
choices of the pairing condition in the antiferromagnetic
state have been raised in the literature [34–37]. In this re-
spect we note that the consequences of the (simultaneous)
occurrence of triplet pairing has neither been considered
nor excluded by the analysis since the simple model is
capable of reproducing the key features of the inelastic
spectra. Thus, in the following analysis, the condensate
involves the pairing (k ↑,−k ↓) where k is a wave vector
in the antiferromagnetic Brillouin zone.

2.2 The magnetic susceptibility

Following the mean field coupling scheme, the total sus-
ceptibility of sub-system (i) in combination with sub-
system (ii) may be written:

χ =
χ1 + χ2 + 2λχ1χ2

1− λ2χ1χ2
(1)

where χ1 and χ2 are the starting susceptibilities (i.e. with
all interactions apart from the mean field coupling be-
tween χ1 and χ2 switched on) and λ represents the cou-
pling coefficient between the low, χ1, and intermediate, χ2,
frequency modes [18–21,25–30]. Such a mean field model
acts as low frequency amplifier since, in this limit, the real
part of χ tends to a constant whilst the imaginary part
is proportional to the frequency [38]. This, for the dissi-
pative component of the total susceptibility, as ω → 0,
yields a denominator, 1 − λ2Re[χ1]Re[χ2], whilst at high
frequencies the bare susceptibilities must vanish and the
denominator goes to unity. Thus the low frequency re-
sponse will be enhanced by a generalised Stoner factor. In
the limit, χ1 � 1/λ� χ2, a simplification of equation (1)
has been used previously to describe, for example, f−d
interactions in actinides [39]. In our case, where the con-
duction electrons which condense into the superfluid state
have heavy quasiparticle f character (witness the jump
in specific heat at Tc [3]) and we do not know, a priori,
the relative magnitudes of the terms, it is more reasonable
to keep the full expression. Keeping the full equation in-
volves no extra parameters. In either case, it is the origin
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Fig. 1. The spin wave dispersion is plotted for small wave vectors q around Q0. The dispersion parallel to c∗, top three
frames, is much stiffer than that parallel to a∗, bottom three frames. The stiffness constants are Dc∗ ∼ 120 ± 10 meV Å2 and
Da∗ ∼ 20± 10 meV Å2 respectively. The antiferromagnetic Bragg peak and the incoherent elastic scattering which fall within
the elastic window of the spectrometer, ±0.14 meV about E = 0, are not shown.

and structure of χ1 as a function of temperature and wave
vector which is of central interest.

The focus in this paper is on the form and interpre-
tation of the low frequency component, χ1, in the super-
conducting phase. If one accepts that the enhanced low
frequency scattering, which appears uniquely in the su-
perconducting phase, is driven by the condensate, gen-
eral arguments (see under Eq. (2)) yield the symmetry of
the gap function [19–21] at least for the dominant sheets
of the Fermi surface probed by this technique. That this
scattering may be related to the condensate is primarily
supported by the experimental observations that it is sup-
pressed on passing to the normal state either by increasing
temperature or by an applied magnetic field greater than
Hc2 [14–21]. This conclusion is reinforced by the fall in
the Knight shift below Tc [40] and the measured reduc-
tion of specific heat on passing to low temperatures [3,8].
The small residual specific heat at the lowest temperatures
(γ ∼ 9 mJmol−1K−2 [8]) implies a paucity of quasiparticle
excitations, and hence, a vanishing quasiparticle suscepti-
bility. If there were no contribution from the condensate to
χ1 at the lowest temperatures one would observe χ ≈ χ2,

the unrenormalised high frequency component of the sus-
ceptibility (i.e. the bare spin wave).

2.3 Spin wave spectra

Before passing to the low energy response below Tc we
briefly consider the measured spin wave anisotropy in
relation to the proposed Fermi surface. The calculated
Fermi surface [41,42] has four principal sheets of predom-
inately f -electron character. We use the descriptive nota-
tion of Knopfle et al. [41] who label, in their Figures 5
and 6, these sheets as, “cigar”, “cylinder”, “party hat”,
and “eggs”. Where available we use de Haas-van Alphen
(dHvA) data [41–43] to the estimate principal (average)
Fermi surface radii and the effective masses to model the
local dispersion of the quasiparticle bands. In an itinerant
system one anticipates the spin wave dispersion to vary
inversely with the effective mass [44]. As may be seen in
Figure 1 the spin wave dispersion, ~ω(q) = εgap + Dq2,
with stiffness D, around Q0 is significantly steeper along
c∗ than along a∗. Looking at the Fermi surface the “cigar”,
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χ(q, ω) =
∑
k

1
2

[
1 +

ξ(k + q)ξ(k) + cos[Φ(q)]|∆(k + q)||∆(k)|
E(k + q)E(k)

]
f(k + q) − f(k)

ω − [E(k + q)−E(k)] − iΓ

+
∑
k

1
4

[
1− ξ(k + q)ξ(k) + cos[Φ(q)]|∆(k + q)||∆(k)|

E(k + q)E(k)

]
1− f(k + q)− f(k)

ω − [E(k + q) +E(k)]− iΓ

−
∑
k

1
4

[
1− ξ(k + q)ξ(k) + cos[Φ(q)]|∆(k + q)||∆(k)|

E(k + q)E(k)

]
1− f(k + q)− f(k)

ω + [E(k + q) +E(k)]− iΓ
· (2)

“cylinder” and “party hat” have anisotropy but in the op-
posite sense and so we are lead to propose that the “egg”
shaped part of the Fermi surface plays a principal role in
the spin wave response for small q about Q0

1.

2.4 Neutron spectra below Tc

We proceed in the calculation below Tc as follows; first
we calculate the bare spin susceptibility above the super-
conducting ground state following equation (2), and then
make an analytical approximation to the spectral form
which is inserted into the second stage of the calculation
where the mean field coupling, equation (1), is performed.

The spin susceptibility of the excited quasiparticles
above the superconducting ground state is calculated in
the following approximation [50,51],

see equation (2) above.

The first term arises from scattering between quasiparticle
levels above the superconducting ground state, the second
term corresponds with the creation of pairs of quasiparti-
cles (neutron energy loss scattering) whilst the final term
corresponds with pair condensation (neutron energy gain
scattering). At low temperatures the quasiparticle density
is small (witness the small specific heat [8]) and the lead-
ing contribution is expected to come from the second term
where the incident neutron beam stimulates the creation
of quasiparticle excitations. A spin singlet (even parity)
superconducting ground state is assumed [6,45–48]. The
notation is standard: ξ(k) = ε(k)− εF is the normal state
single particle energy relative to the normal state Fermi
energy, ∆(k) the gap and E(k) =

√
ξ(k)2 + |∆(k)|2 the

quasiparticle excitation energy above the superconduct-
ing state. The factor Φ(q) is the phase difference between
∆(k) and ∆(k + q).

Focusing on the second term in equation (2) the key
points of the numerical calculations are first illustrated
with a semi-quantitative analysis. First we note that at
low temperatures the Pauli principle restricts attention to
quasiparticle states lying close to the original Fermi sur-
face, (1− f(k + q)− f(k)) ≈ 1. Turning to the coherence
factor, for minimum excitation energy where the quasipar-
ticles have ξ(k), ξ(k+q) = 0 this reduces to 1− cos[Φ(q)]

1 The breaking of hexagonal symmetry by the antiferromag-
netic moment does not play a large role for these small q vec-
tors.

and thus, for a finite response, ∆(k+q) must be the nega-
tive of ∆(k) at least over a sizable portion of the zone. The
observation of enhanced scattering in the superconducting
phase around the antiferromagnetic reciprocal lattice vec-
tors (i.e. q = Q0 in Eq. (2)) is therefore compatible with
an order parameter displaying sign inversion on transla-
tion by Q0 over a significant part of the zone, that is, the
observed scattering suggests an antiferromagnetic form of
∆ be taken, ∆(k) = −∆(k+Q0) [18–21]. The phase sym-
metry, zeros either at±π/2c or at 0 along c∗, is determined
by further arguments given below.

Independent of this phase symmetry, the neutron scat-
tering response at Q0, within the restriction that we
consider only states having ξ(k) = 0, is then given by
the imaginary part of the Pauli restricted summation∑̃
k1/(ω−2|∆k|+iΓ ). This is a sum of Lorentzians centred

at 2|∆k| and of width Γ . In the case that ∆(k) = −∆(k+
Q0) with |∆k| independent of k, the “antiferromagnetic-
s-wave” (afm-s-wave) state, the response simplifies to a
single Lorentzian centered at 2∆ of damping Γ related to
the effective quasiparticle lifetime.

For the union of the low and high frequency modes,
equation (1), we use a Lorentzian approximation to rep-
resent the low frequency dynamics together with a cou-
pling constant and damped spin wave of the form deter-
mined in the normal state. This approach enables a crude
self consistency; the full χ1 which enters the mean field
coupling equation (1) is assumed to have the same form
as the bare spin susceptibility calculated after equation (2)
but with renormalised parameters. The analysis (at Q0)
then yields experimental values for ∆(Q0). Having ob-
tained the magnitude of ∆ we compute the anisotropy of
the response taking into account the nature of the Fermi
surface within two models for ∆(q).

2.5 Model 1, antiferromagnetic-s-wave

The most primitive approximation for ∆ is to keep it con-
stant in magnitude changing sign at q = (0, 0,±π/2c)
or q = (0, 0, 0). From the form of the low energy scat-
tering in the superconducting state for small q around Q0

(Fig. 2 left hand panel) it is unlikely that either the “cylin-
der” or the “party hat” contribute a significant amount
since they would generate low energy excitations predom-
inately for q parallel to c∗. The observed scattering does
not have this anisotropy. We have examined in some detail
the response of the “cigar” and “egg” surfaces. Assigning
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Fig. 2. The low temperature, 0.2 K, scattering around Q0 is displayed in the left hand frame for q along c∗ and for q along
a∗. The data are fitted with the model susceptibility function discussed in the text (Eq. (1)) taking the experimental resolution
into account and with spin wave parameters and coupling constant keeping their values determined above Tc. The model form
of χ1, based on the Lorentzian approximation, is plotted in the right hand frame (top and bottom). The calculations have been
normalised to unity at their maximum value which occurs for Q = Q0. As in Figure 1 the elastic scattering is not shown.

a sine wave like symmetry to ∆, i.e. zero at the Brillouin
zone centre would yield no nodes on either the “cigar”
or “egg” part of the Fermi surface, conversely, the cosine
(A1g) symmetry gives equatorial nodes around the “cigar”
shaped sheets located at q = (0, 0,±π/2c). In view of the
symmetry properties of ∆ determined from analyses of
tunneling data [22–24], nuclear resonance [40,46,47] and
upper critical field measurements [45] we use this latter
form [52].

The sum in equation (2) involves the whole f -electron
Fermi surface. As in the case of the spin wave response we
use the anisotropy of the scattering to identify the prin-
cipal sheets. To start the calculation we compute (Fig. 3)
the form and relative magnitude of response from the
“egg” and “cigar” Fermi surface sheets for small q around
Q0 using the second term of equation (2). The curves in
Figure 3 are based on parameters extracted from band
structure calculations and dHvA data and on the values
of |∆| and quasiparticle damping rate Γ measured by tun-
neling [24]. The most poorly known parameter is m∗. A

value of εFermi = 35 K has been taken which gives m∗
in the range ∼ 10∼100 for the “cigar” and “egg” Fermi
sheets with average values estimated as 40 and 65 respec-
tively. In the left hand panel of Figure 3 the calculated
response from the “egg” sheet of the Fermi surface has
been plotted, the curves have been normalised to unity at
the maximum of the (0,0,0.5). In the right hand panel of
Figure 3 the response from the “cigar” sheet of the Fermi
surface is given under the same normalisation. In either
case, at Q0 and the lowest temperatures, the susceptibility
which is dominated by the second term in equation (2),
has the approximate form of a Lorentzian centered around
twice the maximum single particle gap, with the width be-
ing determined by the forms of ε(k) and ∆(k).

The Lorentzian approximation, with the experimental
resolution, the phenomenological spin wave response and
the mean field coupling constant determined just above
Tc, permits calculation of the solid curves in Figure 2,
left hand frame. The values of χ′′1 used in the fits, nor-
malised to unity at Q0, are given in the right hand frame
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Fig. 3. Calculations based on the second term of equation (2) in the text using the afm-s-wave model for ∆. Parameter values
for the Fermi surface are extracted from band structure calculations and dHvA data; the values of∆ and quasiparticle damping
rate Γ are those measured by tunneling [24]. The left hand frame gives the response normalised to unity at Q = Q0 derived
from the “egg” sheet of the Fermi surface. The right hand frame gives the response derived from the “cigar” sheet of the Fermi
surface. The response is less isotropic than that in the left hand frame and is approximately three times weaker (see also Fig. 5).

of Figure 2. To complete the consistency loop we now re-
fer back to Figure 3. Two points are clear: first, for the
given parameters, the scattering amplitude from the “egg”
sheet is approximately three times that calculated from
the “cigar”, and, as q increases from Q0, the response
from this sheet has an anisotropy most similar to the
experimental data. Second, the Lorentzian form, whilst
moderately successful in capturing the calculated line-
shape around Q0 becomes an increasingly poor approx-
imation as one moves out in the zone. As we shall see,
Section 2.6, replacing the (unphysical) discontinuous jump
in ∆ at the zone boundary by a smooth fall off renders the
profile more nearly Lorentzian in form by increasing the
density of low energy excitations.

2.6 Second model for ∆

Model 1 for ∆(k) is overly simple. In general nodes at
(0, 0,±π/2c) with A1g symmetry may be built from func-
tions of the form ∆(k) =

∑
an cos((2n + 1)ckz). Moving

away from the “square wave” form of ∆ will give a gap of
varying magnitude over both the “egg” and “cigar” Fermi
surface sheets. We consider how this affects the interpre-
tation of experimental data.

In Figure 4, a model of ∆ is given (left hand ordinate)
together with the schematic cross-sections of the “egg”
and “cigar” Fermi sheets situated in the antiferromag-
netic Brillouin zone (right hand ordinate). The increased
region of momentum space over which the gap has below
maximum value swells the density of low energy excita-
tions out of which to build the dynamic susceptibility in
comparison with model 1. This shows up as a tail in the
neutron response below the peak at 2∆max (Fig. 5) left
hand panel for the “egg” and right hand panel for the
“cigar”, respectively. In particular, around Q0, the cal-
culated response from the “egg” develops a low energy
shoulder due to the almost flat part of the surface which
lies close to (0, 0,±π/2c). The relative intensities of the
“egg” and “cigar” contributions remain approximately in
the ratio 3:1 as in model 1 and the softening of the square
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Fig. 4. The plot gives the superposition, on a common c∗ ab-
scissa, of the “cosine” energy gap function (left hand ordinate)
and the “egg” and “cigar” sheets of the Fermi surface (right
hand ordinate). The dotted line marks the zone boundaries
along a∗ and c∗. The “cosine” profile, model 2, is of the form:
∆(q) ∝ cos(qzc)− cos(3qzc)/5 + cos(5qzc)/30.

wave profile for ∆ leaves the anisotropy of the calculated
response in qualitative agreement with the experimental
data.

3 Discussion

3.1 Overview

Experimental reports which strongly favour a spin sin-
glet superconducting state with line nodes about the c∗
axis include: nuclear resonance data [40,46,47], the mea-
sured µSR reduction in spin susceptibility [6], the angular
dependence of the upper critical field [45] and tunneling
data [22–24]. The interpretation of the low temperature
thermal conductivity [48,49] indicates the need for a node
structure yielding quasiparticle excitations with momenta
along both c∗ and a∗ directions. Assuming an ellipsoidal
Fermi surface centered at q = (0, 0, 0) this requires either
(i) equatorial and polar nodes or, (ii), nodes lying between
the equatorial and polar positions, as for example in the
Y2,0 state. Alternatively, the data may be compatible with
the given, antiferromagnetic, gap structure taken together
with those sheets of the Fermi surface which cross the
Brillouin zone boundary. Taking into account the Fermi
surface topology the proposed form of ∆(k) is consistent
with the requirements of all these experiments.

It has been argued [53], that, if the dominant coupling
in the superconducting state involves a given set of (ura-
nium) ions then, the symmetry adapted wave functions
appropriate to the group representations of the (hexago-
nal) lattice may give insight into the permitted symme-
tries of the order parameter. Reversing the argument, and
assuming the pairing wave function to have the symme-
try of ∆, the neutron scattering data lend weight to the

idea that the coupling may involve neighbouring sheets
of U ions on a given magnetic sub-lattice. Such an order
parameter might act to lower the on site repulsive part
of the interaction and thereby reduce the importance of
retardation effects in the pairing. Since we are only inter-
ested in quasiparticle excitation energies in the vicinity of
∆ strong coupling effects have not been incorporated in
the calculation of the neutron scattering cross-section; the
gap is taken to be independent of quasiparticle energy and
has no imaginary part.

3.2 Tunneling

Tunneling spectra involve two principal data sets by the
same group [22–24]. Experiments were performed on films
of UPd2Al3 first with a relatively thin insulating layer be-
tween the sample and the counter electrode [22,23] and
later with a more substantial oxide layer [24]. Under the
latter conditions, in the given experimental geometry, the
tunneling current is highly directional along the crystalline
six-fold axis. The surface explored is the “egg”. The anal-
ysis given in [24] assumes a constant value of ∆ over
the tunneling states together with a leakage conductiv-
ity fixed to model the offset in conductance at the origin.
This would be consistent with an afm-s-wave model for
∆. The modified, sum of cosines, form of ∆ gives tunnel-
ing spectra as the superposition of that arising from two
values of the energy gap assuming no interference term.
The minimum gap arises from the (almost) flat part of
the surface near (0, 0,±π/2c) and the maximal value from
the “apex” situated near (0,0,0). Simulations of tunnel-
ing spectra using the Dynes formula [54], reproduced in
Figure 6 for the parameters used by Jourdan et al. [24] and
also for a gap which varies in accordance with model 2, in-
dicate that the experimental data would also be consistent
with the latter form of ∆. In addition to the experimental
identification of the quasiparticle gap on the “egg” Fermi
surface sheet, the tunneling data bring rather direct ev-
idence of a strong interaction between the quasiparticle
charge and magnetisation density degrees of freedom on
this sheet of the Fermi surface. In the superconducting
phase the tunneling spectra exhibit a pronounced oscilla-
tion at 1.2 meV, it is proposed that this corresponds with
the spin wave gap [24]. Interestingly, it is precisely with
the “egg” surface that we identify the anisotropy of the
spin wave response around Q0 yielding a high density of
spin wave modes for fluctuations in the a∗−b∗ plane.

Tunneling spectra taken with a thinner insulating
layer [22,23] give sensitivity to Fermi surface states ly-
ing on a cone of greater semi-angle about the c∗ axis. In
these experiments a clear change of the conductance pro-
file occurs for temperatures greater than 1.2 K indicative
of a gap nodal structure. In the light of model 2, as the
temperature increases the surface of the “egg” close to
(0, 0,±π/2c) may develop a substantial density of quasi-
particle excitations, starting around its lip. This would
naturally account for the apparent change in gap sym-
metry with temperature. Given an approximately BCS
form for the temperature dependence of the gap function
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Fig. 5. As in Figure 3 but for model 2 for ∆. The left hand frame gives the response normalised to unity at Q = Q0 derived
from the “egg” sheet of the Fermi surface. The right hand frame gives the response derived from the “cigar” sheet of the Fermi
surface. The response shows an increased low energy spectral weight arising from the “cosine” energy gap profile.

[20,24] one may estimate the onset temperature of signifi-
cant thermal excitation as ∼ 0.5∆. On the lip of the “egg”
near (0, 0,±π/2c) the gap is estimated ∼ 2 K (see Fig. 4)
giving an onset temperature around 1 K in accord with
the experiment.

3.3 Neutron data, temperature dependence

In the light of this model for the thermal excitation of
quasiparticles we examine the temperature dependence
of the neutron scattering data at Q0. The neutron data
(Fig. 7) are remarkable in that the observed scattering
does not change in magnitude or form until 1.2 K where
upon the intensity both falls and starts to develop a strong
quasielastic component. The suggested model accounts, at
the qualitative level, for these unusual observations: below
1 K the scattering from the nodeless “egg” sheet is essen-
tially temperature independent since ∆� kBT ; above 1 K
the approximately flat part of the sheet near (0, 0,±π/2c)
yields a Fermi surface area over which thermal activation
creates quasiparticle excitations at a rapidly expanding
rate. This swells the quasiparticle contribution to the dy-

namical susceptibility at the cost of the condensate re-
sponse giving rise to the observed change in spectral form.

4 Conclusion

It has been demonstrated that an analysis of low en-
ergy neutron spectra taken below Tc is consistent with
the notion that one is observing scattering from the con-
densate. This being so, the symmetry of the gap func-
tion is constrained such that ∆(k) = −∆(k + Q0). Using
Fermi surface parameters from the calculated band struc-
ture and dHvA data together with quasiparticle gap and
lifetimes estimated from tunneling experiments, the mea-
sured neutron spectra, at low energies in the supercon-
ducting state, appear to be dominated by the scattering
anticipated from the “egg” sheets of the Fermi surface.
Further, the anisotropy of the scattering for small q near
Q0 also suggests that the “egg” sheet of the Fermi surface
is involved in a principal manner in the superconducting
state. These conclusions have been reinforced by analysis
of other experimental results, notably those obtained from
high quality tunneling data [22–24].
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Fig. 6. A simulation of tunneling spectra at 0.3 K using the
Dynes formula. Circles are calculated using the parameters de-
rived in [24] whilst the solid line is calculated using the “cosine”
form of ∆. Either form appears capable of giving an acceptable
interpretation of the experimental data taken for tunneling cur-
rents parallel to the crystalline c axis.

Fig. 7. Neutron scattering intensity at Q0 as a function of
energy transfer for various temperatures below Tc. For tem-
peratures up to 1 K there is negligible change in profile. The
rapid change at 1.25 K and above supports the premise that
part of the Fermi surface responsible for the scattering should
have a reduced energy gap. As in Figure 1 the elastic scattering
is not shown.

Other techniques, thermal conductivity and nuclear
magnetic resonance, for example, may yield complemen-
tary information. On account of the gap, at the lowest
temperatures the “egg” sheet will contribute nothing to
the heat flux nor to ωnmr (∼ zero frequency) magnetic
excitations; conversely the “cigar”, “cylinder” and “party
hat” are all able, in principle, to contribute. At low tem-
peratures these experiments then yield complementary in-
formation; at higher temperatures, but still below Tc, the
thermal excitations on the “egg” sheet may play a sig-

nificant role. Interestingly, both the upper critical field
Bc2 and the heat capacity exhibit an anomalous temper-
ature dependence. The pronounced changes in the angu-
lar dependence of Bc2 as a function of temperature [45],
which are indicative of a cross over from an “s-wave”
like gap to a “d-wave” like gap on passing from 0.5 K
to 1.5 K, may be qualitatively understood with the sug-
gested model for the thermal evolution of quasiparticle ex-
citations on the lip of the “egg” close to the ±π/2c planes.
The heat capacity below Tc exhibits a residual linear term
and a strong T 3 term. In addition to an origin of the T 3

term in single quasiparticle excitations, in the presence of
strong magnetic correlations one may have to consider the
role of low energy magnetic fluctuations. The coefficient,
∼ 140 mJmol−1K−4 [7,8], of the T 3 term in the heat ca-
pacity corresponds to a mode of dispersion ∼ 5 meV Å. At
Tc this implies a range in q of excitation of ∼ 0.035 Å

−1

which lies within the known length scale of magnetic cor-
relations [14–21]. Currently the energy of such a mode lies
below our neutron scattering resolution.

It is hoped that this work may stimulate the numerical
calculation of several quantities; notably the simulation of
altering the electron concentration. For example, the effect
of reducing the lattice parameter, mimicking the applica-
tion of hydrostatic or uniaxial strain, on the shape and
position with respect to the antiferromagnetic Brillouin
zone boundary of the “egg” Fermi surface. Also it will
be of interest to investigate the chemical dependence of
critical areas of the Fermi surface on electron concentra-
tion at equilibrium lattice parameter. In the former case
one might try to unravel the relatively low sensitivity of
Tc to pressure [55], in the latter, for example, the role of
the substitution of Ni for Pd or the substitution of Ga
for Al. Eventually the calculation of the Fermi surfaces
in UNi2Al3 where the incommensurate magnetic order-
ing may be linked to the Fermi surface topology and in
UPd2Ga3 where the double unit cell appears to break a
symmetry requirement and no superconductivity has been
observed to the lowest temperatures explored [56]. On the
theoretical side a more complete picture of the magnetic
excitation spectra in antiferromagnetic-superconductors is
being sought. Experimentally, the study of greater regions
of reciprocal space with high resolution neutron scatter-
ing above and below Tc are in progress with the aim to
identify further contributions of the f -electron Fermi sur-
face active in the superconducting state. The response at
large q away from Q0 may be expected to give informa-
tion on possible coupling between Fermi surface sheets.
Improved samples, with longer quasiparticle lifetimes are
anticipated to yield sharper spectral features improving
our understanding of the superconducting state. In par-
allel, inelastic neutron scattering studies on the UNi2Al3
compound have been initiated [57] and the possible use of
such a model approach to interpret neutron experiments
in other heavy fermion and HiTc materials is in progress.

The essential input from my experimental colleagues, B.
Roessli, N. Sato, N. Aso, A. Hiess, G.H. Lander, Y. Endoh
and T. Komatsubara, is gratefully acknowledged. Thanks are
due to M. Huth and M. Jourdan for advice on the tunneling
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tures of the Fermi surface [41]; I. Fomin, J.P. Brison and J.
Flouquet for their critical reading of the manuscript.

References
1. J.F. Annett, Adv. Phys. 39, 83 (1990).
2. J.R. Schrieffer, Theory of superconductivity (Benjamin

Cummings, London, 1964).
3. C. Geibel, C. Schank, S. Thies, H. Kitazawa, C.D. Bredl,

A. Bohm, M. Rau, A. Grauel, R. Caspary, R. Helfrich, U.
Ahlheim, G. Weber, F. Steglich, Z. Phys. B 84, 1 (1991).

4. A. Amato, R. Feyerherm, F.N. Gygax, A. Schenk, M.
Weber, R. Caspary, P. Hellmann, C. Schank, C. Geibel, F.
Steglich, D.E. MacLaughlin, Knetsch, R.H. Heffner, Euro-
phys. Lett. 19, 127 (1992).

5. R. Caspary, P. Hellmann, M. Keller, G. Sparn, C.
Wassilew, R. Kohler, C. Geibel, C. Schrank, F. Steglich,
Phys. Rev. Lett. 71, 2146 (1993).

6. R. Feyerherm, A. Amato, F.N. Gygax, A. Schenck, C.
Geibel, F. Steglich, N. Sato, T. Komatsubara, Phys. Rev.
Lett. 73, 1849 (1994).

7. T. Sakon, K. Imamura, N. Koga, N. Sato, T. Komatsubara,
Physica B 199-200, 154 (1994).

8. F. Steglich, P. Gegenwart, C. Geibel, R. Helfrich, P.
Hellmann, M. Lang, A. Link, R. Modler, G. Sparn, N.
Buttgen, A. Loidl, Physica B 223, 1 (1996).

9. A. Krimmel, P. Fisher, B. Roessli, H. Maletta, C. Geibel,
C. Schank, A. Grauel, A. Loidl, F. Steglich, Z. Phys. B 86,
161 (1992).

10. H. Kita, A. Donni, Y. Endoh, K. Kakurai, N. Sato, T.
Komatsubara, J. Phys. Soc. Jap. 63, 726 (1994).

11. L. Paolasini, J.A. Paixao, G.H. Lander, P. Burlet, N. Sato,
T. Komatsubara, Phys. Rev. B 49, 7072 (1994).

12. A. Krimmel, A. Loidl, P. Fisher, B. Roessli, A. Donni, H.
Kita, N. Sato, Y. Endoh, T. Komatsubara, C. Geibel, F.
Steglich, Solid State Commun. 87, 829 (1993).

13. B.D. Gaulin, E.D. Isaacs, J.G. Lussier, J.N. Reimers, D.
Gibbs, Pzschack, A. Schroder, L. Taillefer, J.D. Garrett,
Phys. Rev. Lett. 73, 890 (1994).

14. N. Sato, N. Aso, G.H. Lander, B. Roessli, T. Komatsubara,
Y. Endoh, J. Phys. Soc. Jap. 66, 1884 (1997).

15. N. Metoki, Y. Haga, Y. Koike, N. Aso, Y. Onuki, J. Phys.
Soc. Jap. 66, 2560 (1997).

16. N. Metoki, Y. Haga, Y. Koike, N. Aso, Y. Onuki, J. Magn.
Magn. Mat. 177-181, 449 (1998).

17. N. Metoki, Y. Haga, Y. Koike, Y. Onuki, Phys. Rev. Lett.
80, 5417 (1998).

18. N. Bernhoeft, B. Roessli, N. Sato, N. Aso, A. Hiess, G.H.
Lander, Y. Endoh, T. Komatsubara, in Itinerant Electron
Magnetism: Fluctuation Effects, edited by D. Wagner, W.
Brauneck, A. Solontsov (Kluwer, 1998).

19. N. Bernhoeft, N. Sato, B. Roessli, N. Aso, A. Hiess, G.H.
Lander, Y. Endoh, T. Komatsubara, Phys. Rev. Lett. 81,
4244 (1998).

20. N. Bernhoeft, B. Roessli, N. Sato, N. Aso, A. Hiess, G.H.
Lander, Y. Endoh, T. Komatsubara, Physica B 259-261,
614-620 (1999).

21. N. Bernhoeft, to appear in International Workshop on
Electron Correlations and Materials Properties, edited by
A. Gonis, N. Kioussis, M. Ciftan (Plenum, 1999).

22. M. Jourdan, M. Huth, J. Hessert, H. Adrian, Physica B
230-232, 335 (1997).

23. M. Jourdan, M. Huth, S. Moulould, H. Adrian, J. Magn.
Magn. Mat. 177-181, 431 (1998).

24. M. Jourdan, M. Huth, H. Adrian, Nature 398, 47 (1999).
25. D. Edwards, J. Magn. Magn. Mat. 15-18, 262 (1980).
26. D. Edwards, J. Phys. F 12, 1789 (1982).
27. H. Hasegawa, J. Phys. Soc. Jap. 46, 1504 (1979).
28. Y. Kuromoto, K. Miyake, J. Phys. Soc. Jap. 59, 2831

(1990).
29. N. Bernhoeft, G.G. Lonzarich, J. Phys. C 7, 7325 (1995).
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